1. A ∩ B=B ∩ A
2. (A ∩ B) ∩ C=A ∩ (B ∩ C)
Answer:
1. Proof:
Show that A ∩ B ⊂ B ∩ A
take any x ∈ (A ∩ B)
obvious x ∈ (A ∩ B)
⇔ x ∈ A ∧ x ∈ B
⇔ x ∈ B ∧ x ∈ A
⇔ x ∈ (B ∩ A)
so A ∩ B ⊂ B ∩ A...........( I )
Show that B ∩ A ⊂ A ∩ B
take any x ∈ (B ∩ A)
obvious x ∈ (B ∩ A)
⇔ x ∈ B ∧ x ∈ A
⇔ x ∈ A ∧ x ∈ B (komutatif)
⇔ x ∈ (A ∩ B)
so B ∩ A ⊂ A ∩ B.............( II )
From (!) and (II) we conclude that A ∩ B ⊂ B ∩ A