Show that:1. A ∩ B=B ∩ A2. (A ∩ B) ∩ C=A ∩ (B ∩ C)Answer:1. Proof:Show that A ∩ B ⊂ B ∩ A take any x ∈ (A ∩ B) obvious x ∈ (A ∩ B) ⇔ x ∈ A ∧ x ∈ B ⇔ x ∈ B ∧ x ∈ A ⇔ x ∈ (B ∩ A) so A ∩ B ⊂ B ∩ A...........( I ) Show that B ∩ A ⊂ A ∩ B take any x ∈ (B ∩ A) obvious x ∈ (B ∩ A) ⇔ x ∈ B ∧ x ∈ A ⇔ x ∈ A ∧ x ∈ B (komutatif) ⇔ x ∈ (A ∩ B) so B ∩ A ⊂ A ∩ B.............( II )From (!) and (II) we conclude that A ∩ B ⊂ B ∩...